
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 17 – Classes and Modules
(Continued)

Prof. Katherine Gibson

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered

• More about “good quality” code

• Modules

• The import keyword

– Three different ways to import modules

• Classes

– Creating an instance of a class

– Vocabulary related to classes

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To review the vocabulary for classes

• To better understand how constructors work

• To learn the difference between

– Data attributes

– Class attributes

• To explore special built-in methods and attributes

4

www.umbc.edu

Class Vocabulary

5

class student:

 def __init__(self, name, age):

 self.full_name = name

 self.age = age

 def get_age(self):

 return self.age

_______ class _____ ______ ______

class ________
(or ________) class ______

www.umbc.edu

Class Vocabulary

6

class student:

 def __init__(self, name, age):

 self.full_name = name

 self.age = age

 def get_age(self):

 return self.age

keyword class name current instance

constructor

class members
(or attributes) class method

www.umbc.edu

Creating Instances of a Class

www.umbc.edu

Constructor

• In order to use a class we have created, we
have to be able to create instances of it to use

• We can accomplish this using a special type of
method (i.e., a class function) called a
constructor

– Using it will allow us to “construct”
instances of our class

 8

www.umbc.edu

__init__

• The constructor has a special name:
the word “init” with two underscores in
front of it, and two underscores in back

– This special name tells Python how to use it

• The __init__() method needs to be
contained inside our class

– It normally does initialization of the class data
members and other important things

9

www.umbc.edu

Constructor Example

• Here is an example constructor for student
class student:

 def __init__(self, name, age, gpa):

 self.name = name

 self.age = age

 self.gpa = gpa

• It takes in three arguments (plus self) and
initializes our data members with them

 10

www.umbc.edu

Using a Constructor

• To use our constructor:

– Use the class name with () notation

– Pass in the arguments it needs

– Assign the results to a variable

test1 = student("Jane", 22, 3.2)

• Creates a new student object called test1

11

www.umbc.edu

Constructor Code Trace

• What happens when we call a constructor?

12

def main():

 test1 = student("Jane", 22, 3.2)

 def __init__(self, name, age, gpa):

 self.name = name

 self.age = age

 self.gpa = gpa

www.umbc.edu

Constructor Code Trace

• What happens when we call a constructor?

13

def main():

 test1 = student("Jane", 22, 3.2)

 def __init__(self, name, age, gpa):

 self.name = name

 self.age = age

 self.gpa = gpa

age = 22

name = "Jane"

gpa = 3.2

name: "Jane"

age: 22

gpa: 3.2

www.umbc.edu

Constructor Code Trace

• What happens when we call a constructor?

14

def main():

 test1 = student("Jane", 22, 3.2)

 def __init__(self, name, age, gpa):

 self.name = name

 self.age = age

 self.gpa = gpa

age = 22

name = "Jane"

gpa = 3.2

Creates
and returns a

student object

Notice that all of the local
variables in __init__

disappeared!

www.umbc.edu

The self Variable

• The self variable is the first parameter of
every single class method – we must use it!

– But we don’t explicitly pass it in

– Python implicitly passes it in (for us!)

• Calling the constructor:
 test1 = student("Jane", 22, 3.2)

• The constructor definition:
 def __init__(self, name, age, gpa):

 15

www.umbc.edu

The self Variable

• The self variable is how we refer to the
current instance of the class

• In __init__, self refers to the object that
is currently being created

• In other methods, self refers to the instance
the method was called on

16

www.umbc.edu

Deleting an Instance

• Some languages expect you to delete instances
of a class after you are done with them

– Python is not one of those languages

• Python has automatic “garbage collection”

– It automatically detects when all of the references
to a piece of memory have gone out of scope

– Generally works pretty well

17

www.umbc.edu

Attributes

www.umbc.edu

Attributes

• There are two types of attributes:

1. Data attributes

– Also called instance variables

2. Class attributes

– Also called class variables

19

www.umbc.edu

Data Attributes

• Data attributes

– Variables are owned by a particular instance

– Each instance has its own value for each attribute

20

test1 = student("Jane", 22, 3.2)

name: "Jane"

age: 22

gpa: 3.2

test2 = student("Adam", 19, 1.9)

name: "Adam"

age: 19

gpa: 1.9

test1’s attributes

test2’s attributes

www.umbc.edu

Data Attributes

• Data attributes are created and initialized
by the class’s __init__ method

• Inside the class, data attributes must have
“self.” appended to the front of them

21

def setAge(self, age):

 if age > 0:

 self.age = age

 else:

 self.age = 1

www.umbc.edu

Class Attributes

• Class attributes are owned by the whole class

• All instances share the same value for it

– When any instance of the class changes it, it
changes for all instances of the class

• Class attributes are often used for:

– Class-wide constants

– Counting how many instances of a class exist

22

www.umbc.edu

Class Attributes

• Class attributes must be defined within the
class definition, but outside any methods

23

class student:

 MAX_ID_LENGTH = 4 # constant

 numStudents = 0 # counter

 def __init__(self, name, age, gpa):

 # __init__ method definition...

 # rest of class definition

www.umbc.edu

Class Attributes

• Since there is one of these attributes per class
and not one per instance, they’re accessed via
a different notation:
 self.__class__.name

– Use the actual keyword “class”

– This is the safest way to access these attributes

24

def increment(self):

 self.__class__.numStudents += 1

www.umbc.edu

Data vs. Class Attributes Example

25

class counter:

 # class attribute

 overall_total = 0

 def __init__(self):

 # data attribute

 self.my_total = 0

 def increment(self):

 self.my_total += 1

 self.__class__.overall_total += 1

www.umbc.edu

Data vs. Class Attributes Example

26

one = counter()

two = counter()

one.increment()

two.increment()

two.increment()

print("one's total", one.my_total)

print("class total", one.__class__.overall_total)

print("two's total", two.my_total)

print("class total", two.__class__.overall_total)

one's total 1

class total 3

two's total 2

class total 3

www.umbc.edu

Special Built-In Methods

www.umbc.edu

Built-In Methods

• Python automatically includes many methods
that are available to every class

– Even if you don’t explicitly define them

• These methods define functionality triggered
by special operators or usage of that class

• All built-in methods have double underscores
around their name: __init__

28

www.umbc.edu

Special Methods

• Here are some special methods and their uses:

__init__

– The constructor for the class

– Often initializes the data members

__repr__

– Defining how to “turn” an instance into a string

– Used whenever we call print() with an instance

29

www.umbc.edu

More Special Methods

• There are additional special methods, including
ones that let you define how these work:

– Comparison

– Assignment

– Copying

– len()

– Using [] notation like a list

– Using () notation like a function

 30

www.umbc.edu

Special Built-In Attributes

www.umbc.edu

Built-In Attributes

• Python also has special attributes that exist for
all classes

__class__

– Gives a reference to the class from any instance

– We already use this for accessing class attributes

__module__

– Gives a reference to the module it’s defined in

32

www.umbc.edu

The __doc__ Attribute

• We can also use documentation strings in our
class, and access them using __doc__

• To add documentation, use 3 double quotes

33

class student:

 """This is a class for a student"""

 MAX_ID_LENGTH = 4

 numStudents = 0

 def __init__(self, name, age, gpa):

 """Constructor for a student""“

 # constructor definition...

www.umbc.edu

The __doc__ Attribute

• To access the documentation, use __doc__

34

 test1 = student("Jane", 22, 3.2)

 print(test1.__doc__)

 print(test1.__init__.__doc__)

This is a class for a student

Constructor for a student

www.umbc.edu

The dir() Function

• If you want a list of all the available attributes
and methods, you can call the dir()
function on any instance of the class:
dir(testStudent)
['MAX_ID_LENGTH', '__class__', '__delattr__', '__dict__',

'__dir__', '__doc__', '__eq__', '__format__', '__ge__',

'__getattribute__', '__gt__', '__hash__', '__init__',

'__le__', '__lt__', '__module__', '__ne__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__', '__weakref__',

'age', 'checkGraduate', 'getNumStudents', 'gpa', 'idNum',

'increment', 'name', 'numStudents', 'printStudent', 'setAge',

'setIDNum']

35

www.umbc.edu

If we have time…

36

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements

• Midterm Survey (on Blackboard)

– Due by Friday, November 6th at 8:59:59 PM

• Project 1 is out

– Due by Tuesday, November 17th at 8:59:59 PM

– Do NOT procrastinate!

• Next Class: Inheritance

38

